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Deterministic phase unwrapping in the presence of noise
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We present a new Fourier-based exact solution for deterministic phase unwrapping from experimental maps
of wrapped phase in the presence of noise and phase vortices. This single-step approach has superior per-
formance for images with high phase gradients or insufficient digital sampling approaching 2p�pixel and
therefore performs as a fast and practical solution for the phase-unwrapping problem for experimental appli-
cations in applied optics, physics, and medicine. © 2003 Optical Society of America
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The ability to determine a true phase map from the
principal noisy value of a wrapped phase is essential
for many fields in applied optics, physics, medicine,
and engineering, including geodesic and military
applications that deal with coherent wave processes,
such as homomorphic signal processing,1 solid-state
physics,2 speckle interferometry,3,4 adaptive or com-
pensated optics,5 magnetic resonance imaging,6,7 and
synthetic aperture radar interferometry.8 It is also
essential in optical and electron holography,9 since any
wrapped phase map is defined by its principal value
0 # ww�r� , 2p, whereas the spatially varying true
phase w�r�, which measures real physical quantities
(such as thickness or potential map, temperature, or
deformation fields), can span many p. Therefore
phase unwrapping must be carried out before any
reconstruction of the physical quantities from the
given phase map. Recovery of the true phase w�r�
from the noisy principal value ww�r�, known as the
phase-unwrapping process, is described by the follow-
ing equation, which is valid for all r � �x, y, z� [ V:

ww�r� 1 2pk�r� � w�r� 1 n�r� , (1)

where k�r� is a solution for the integer number f ield
and transforms Eq. (1) into an identity; n�r� is the
experimental noise function. Several algorithms for
phase unwrapping in the presence of noise have been
reported (see, for example, Refs. 10–12 and references
therein), but only a few of them are good enough for
practical applications (with limitations such as user
input, median filtering, computing time, image size,
and absence of phase vortices). The main problem
that causes many of these approaches to fail is that
they are one dimensional, based on column-by-column
(raw-by-raw) operation. To overcome this problem, a
path-independent solution of the Poisson equation was
suggested in Ref. 13 and in an advanced version in
Ref. 14. However, in Refs. 13 and 14 it was neces-
sary to postulate appropriate boundary conditions that
did not follow from the experiment. In addition, any
use of Laplacian operators on digital data requires
kernels of at least 3 3 3 pixels. Hence this approach
may fail in the case of strong phase oscillations or
undersampled data.

In this Letter we report a new Fourier-transform-
based single-step phase-unwrapping procedure with
the minimal theoretically possible kernel size of
2 3 1 pixels. This procedure is immune to noise,
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path independent, fast, and robust. It is ideal for
phase maps with marginal sampling and is free from
the boundary constraints required by the solution
of the Poisson equation. Phase unwrapping that is
unique to an additive constant is realized by the exact
Fourier solution through Eq. (3). For digital phase
reconstruction we assume only that local phase and
noise-related phase jumps do not exceed 2p�pixel.
This makes sense for strongly undersampled objects.
Otherwise, the definition of digitized wrapped phase
itself is not single valued. In addition, the unwrap-
ping of statistical noise, exceeding 2p�pixel phase
jumps (FWHM . 1.57), would change the statistic
of the Gaussian noise, and Eq. (1) would not have a
unique k�r� solution from a physical point of view.

It is known that any differentiable scalar function
c�r� can be uniquely recovered up to some constant
in a simple bounded area V, if the derivatives ≠xc�r�
and ≠yc�r� exist everywhere in this area. However,
any direct integration of the derivatives for phase
unwrapping results in an unreliable path-dependent
solution. Unwrapping it is often complicated by the
presence of phase vortices and noise, and, in general,
it fails (see Fig. 1b). On the other hand, this prob-
lem can be solved in Fourier space. First note two
remarkable properties that are valid for forward (F )
and inverse (F21) Fourier transforms with r and q
vectors operating in real and reciprocal space:

=�exp�2piq ? r�� � 2piq�exp�2piq ? r�� , (2a)

=c�r� � 2piF21�F �c�r��q� . (2b)

The vector identity in Eq. (2a) is trivial, whereas
the second vector identity in Eq. (2b), which is valid
for any differentiable scalar complex function c�r�,
can be derived by component analysis with Eq. (2a).
Repeated use of this identity as =�=c� � =2c helps
solve the nonholographic phase retrieval problem as
well.15,16 Next, by applying the F operator to Eq. (2b)
and making its scalar products with q�qx,qy ,qz� com-
ponents, we get a new expression for the scalar real or
complex function c�r� in two-dimensional space:

c�r� � Re
Ω

1
2pi

F21
∑
F �≠xc�qx 1 F �≠yc�qy

q2
�

∏æ
. (3)

Here qx and qy are the spatial projections of the wave
vector q� defined by modulus as q2

� � q2
x 1 q2

y fi 0.
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Fig. 1. Image of sculpture of Aristotle, illustrating several
aspects of the phase-unwrapping process. (a) Synthetic
wrapped phase of 512 3 512 pixels obtained from an
image identical to the image shown in (c). (b) Best
phase unwrapping by the conventional path-dependent
approach, creating artifacts marked by arrows. (c) Exact
and (d) approximate solutions with Fourier transform
via Eq. (3). Note that the maximal phase variation in
(c) is 14.4 rad with local phase gradients as high as
4.07 rad�pixel. The unwrapped phase (c) is pixel to pixel
identical to the original image.

The transform via Eq. (3) is unique up to some con-
stant, since the behavior of function c�r� is defined by
the Neumann boundary condition for its known deriva-
tives. A unique and nonspoiled Fourier solution via
Eq. (3) can be obtained by use of the symmetrization
rule.16 Since integration by Eq. (3) is performed in q
space, the solution appears to be path independent and
immune to noise and phase vortices in the real-space
image.

To recover the phase with Eq. (3), we need to
know only the ≠xc�r� and ≠yc�r� components of the
gradient function =�c�r�. Further, for the phase-
unwrapping problem we assume that c�r� is re-
lated to a real noisy function to be retrieved from
Eq. (1) as c�r� � w�r� 1 n�r�, whereas the wrapped
phase ww �r� is generated by the wrapping operator
ww�r� � W �w�r� 1 n�r��. Notice that the x and y
derivatives of the real noisy phase and the wrapped
phase are identical in r space, except for a few special
single-pixel false lines or pixels where 2p�pixel phase
jumps occur because of the digital wrapping for the
ww�r� phase. Hence, with appropriate correction of
the false pixels in =�ww�r� gradient map it becomes
possible to equate the x and y components such that
≠xc�r� � ≠xww�r� and ≠yc�r� � ≠yww�r� and to recover
a phase c�r� through Eq. (3). We recommend this
effective, robust solution for Eq. (1) that always exists
for any on-line phase-unwrapping procedure no matter
how complex the phase wrap. However, we shall call
it an approximate solution, because for digital image
processing it may not provide perfect correction of false
pixels (typical error of ,2%) in local areas with phase
jumps approaching 2p�pixel (illustrated in Fig. 1d).
Therefore for ideal phase unwrapping (an exact solu-
tion) it is better to recover the 2pk�r� function with the
k�r� integer f ield with the experimental ww�r� function
remaining untouched. Indeed, by taking the gradient
of Eq. (1), we find 2p=�k�r� � =�c�r� 2 =�ww �r�,
where the only unknown function, =�c�r�, can be
found from Eq. (1) and rewritten as

Z�r� � exp�i�ww�r� 1 2pk�r��� � exp�iww�r�� . (4)

There exists a useful relation =�c�r� � Re�=�Z�r��
iZ�r�� with well-defined complex function Z�r� �
exp�iww�r�� free from 2p jumps generated by the
phase-wrapping operator. Actually, this is a simple
means of constructing the =�c�r� gradient map
required by the approximate solution. For the exact
solution, constrained only by finite image sampling,
our false lines or pixels, generated by the wrapping op-
erator, are described by the vector relation 2p=�k�r� �
Re�=�Z�r��iZ�r�� 2 =�ww�r�. Hence, by substituting
the known components ≠xk�r� and ≠yk�r� into Eq. (3)
through Eq. (4), we recover in a single step the whole
field of integer numbers k�r� and make Eq. (1) an
identity. This exact solution (see Fig. 1c) forms the
basis for deterministic phase unwrapping with a
Fourier transform through Eq. (3).

To demonstrate the power of this new approach, we
consider three very different examples of the phase-
unwrapping process, which highlight several as-
pects of this problem. The first example of a phase
map, modeled in Fig. 1, is characterized by phase
gradients as high as 2p�1.5 pixel. Although the
traditional path-dependent approach (Fig. 1b) fails
to unwrap the phase ww�r� (Fig. 1a), both the exact
(Fig. 1c) and the approximate (Fig. 1d) solutions
reproduce the original phase image identical to the
solution in Fig. 1c. As mentioned above, the single-
step approximate solution serves as a perfect guide
for any complex phase unwrapping, because it always
exists, whereas the exact solution may not be obtained
in practice, for instance, because of insufficient digital
sampling with gradients greater than 2p�pixel.

Another example of noisy phase retrieval in the
presence of rapid phase variations, vortices, and noise
is shown in Fig. 2. The wrapped phase (Fig. 2a)
contains Gaussian noise with phase jumps as high as
1.95p�pixel. The exact phase solution from Eq. (3)
is shown in Fig. 2b. It f its pixel to pixel with the
original image used to model the crystal lattice
potential. Note that retrieval of a phase map that
is 512 3 512 pixels usually takes a few seconds on
a Dell (500 MHz) personal computer. Our method
is also capable of incomplete phase retrieval in the
presence of noise jumps that exceed 2p�pixel or phase
discontinuities that are less than 2p�pixel. However,
no k�r� solution of Eq. (1) in this case is unique,
because the wrapping operator distorts the statistics
of noncorrelated Gaussian noise.

For most applications it is commonly assumed
that a wrapped phase exists within the whole image.
However, there is another class of images in which
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Fig. 2. (a) Example of wrapped phase with a high density
of vortices and noise jumps, as shown by the line scan at
the bottom. (b) Unwrapped phase map of 512 3 512 pixels
obtained by the solution of Eq. (3). The unwrapped noisy
phase, measured in radians and shown below by the same
line scan, is pixel to pixel identical to the original noisy
phase. Inset in (a), enlarged pixel structure in the boxed
area.

Fig. 3. (a) Amplitude and (b) wrapped phase components
of the complex magnetic resonance image recorded with
a sampling of 185 3 210 pixels. Results of the exact so-
lution for (c) an unwrapped phase map and (d) the phase
gradients. The temperature color bar in (c) is calibrated
in radians. Inset in (d), amplitude and direction of phase
gradients in magnetic settings.

the phase exists as a physical quantity in only a
bounded area restricted by the imaged object. Let
us consider magnetic resonance imaging, which is
widely used in medical research (Fig. 3). The com-
plex signal Z of proton magnetic resonance in the
two-dimensional case is recorded as Z � X�x, y� 1
iY �x, y� � A�x, y�exp�iww�x, y��, with the wrapped
phase ww�x, y� defined in only the area of nonvanished
amplitude A�x, y�. The analysis of an experimental
complex image Z�A,ww� is shown in Fig. 3. Although
the amplitude information (Fig. 3a) is widely used in
three-dimensional tomography, medical diagnostics,
and clinical studies, the applied research based on
wrapped phase (Fig. 3b) is hampered by the problem
of reliable phase unwrapping. The results in Figs. 3c
and 3d show that a new approach with an appropriate
object mask solves this problem as well. We get both
the quantitative phase map (Fig. 3c) and the phase
gradient map (Fig. 3d) related to the distribution of
the magnetic field in human brain tissue.

In conclusion, we have presented an exact theoreti-
cal solution for the phase-unwrapping problem. Our
approach requires only three Fourier transforms with
a computing time of 	3N2 log N , where N is the image
size in pixels. It provides a deterministic single-step
phase unwrapping in the presence of noise and phase
vortices in all cases when the problem may have cor-
rect physical formulation. For strongly undersampled
images (Figs. 1 and 2) it outperforms other advanced
algorithms,13,14 because the minimal theoretically pos-
sible kernels for derivatives used in our method are
only 2 3 1 pixels. We believe that the new concept,
exact solution, and algorithm will find applications in
optics, physics, engineering, and medicine.
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